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1 Introduction

In many contexts where the basic incentive property of strategy-proofness can be met by
non-trivial social choice functions, it becomes natural to investigate whether some of them
may not only be immune to manipulation by individuals, but can also resist manipulation
by groups of coordinated agents. In previous work (Barberà, Berga, and Moreno 2010, 2016)
we have identi�ed conditions under which, surprisingly, all social choice functions that are
immune to manipulations by individuals will also be free from group manipulation. But
this is not always the case. In particular, many interesting strategy-proof rules in separable
environments1 will indeed be group manipulable. In these cases, we shall argue that not all
group manipulations represent an equally serious threat, because some strategic movements
by coalitions are credible, while others are not. To make this point precise, we de�ne a
new notion of immunity to credible group manipulations and characterize some subclasses
of social choice rules that satisfy this property within speci�c environments. Speci�cally, we
say that a group deviation leading to a pro�table improvement for a group is credible if no
individual member of the group would gain from not following the agreed upon strategy under
the assumption that all others stick to the agreement. And we say then that a rule is then
immune to credible group manipulations if no set of agents can �nd a pro�table deviation
away from the truth that is credible.2 We illustrate the strength of our new de�nition,
which is more demanding than individual but weaker than group strategy-proofness, by
characterizing some families of rules in separable environments, and distinguishing between
those that can meet our new requirement and those that cannot.
After this Introduction we provide notation and de�nitions in Section 2. Section 3

presents characterization results in two speci�c contexts. We start with the problem faced
by voters who must select a set of entrants to a club, as described in Barberà, Sonnenschein,
and Zhou (1991). We concentrate on quota rules: voters can support all candidates they like,
and then those who receive at least a �xed number of votes, q, are chosen. In the domain of
separable preferences, we show that rules based in quota 1 or n (where n is the number of
voters) are immune to credible deviations, while all other rules in the class are not. Hence,
very extreme distributions of power among voters are needed to guarantee immunity. We
then turn to a general version of choice among multi-dimensional alternatives under sepa-
rable references, also called generalized single-peaked. We build on Moulin (1980), Border
and Jordan (1983) and Barberà, Gul, and Stachetti (1993). The cases we consider include
the previous example and many more. We restrict attention to a large class of rules that
are strategy-proof in this context, and again characterize those within the class that are
immune to credible deviations by groups. Again, a requirement in the form of unanimity
plays a crucial role in separating these rules for all the rest, those that are credibly ma-
nipulable. Section 4 discusses alternative de�nitions of credibility for group manipulations,
establishes the equivalence of several apparently di¤erent formulations, and the di¤erences
with other potential de�nitions, whose consequences are also examined and proofs included

1We use this expression loosely here. Formal de�nitions of the environments we refer to are given in the
next section.

2One could de�ne credibility in other terms, some of which are equivalent, others not. This discussion is
postponed to Section 4.
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in the Appendix. Section 5 concludes with some �nal remarks.

2 The model and de�nitions: immunity and credibility

Let N = f1; :::; ng be the set of agents and A be the set of alternatives. Preferences are
complete, re�exive, and transitive binary relations on alternatives. Let U denote such set of
preferences. For i 2 N , Ri denote agent i�s preferences on A. As usual, Pi and Ii denotes the
strict and indi¤erence preference relation induced by Ri, respectively. A preference pro�le
RN = (R1; :::; Rn) 2 U � ::: � U = Un is a n-tuple of preferences on A. It can also be
represented by RN = (RC ; RNnC) 2 Un when we want to stress the role of coalition C in N .
We call a subpro�le of agents in C as RC 2 �i2CU = U c.
A social choice function (or rule) f on Un is a function f : Un ! A.
Let us de�ne some incentive related properties of social choice functions. The best

known nonmanipulability axiom is that of strategy-proofness. In its usual form it requires
the truth to be a dominant strategy for each agent. However, we provide a more general
de�nition which encompasses strategy-proofness and also considers the option that several
agents evaluate the possibility of joint deviations.

De�nition 1 Let f be a social choice function on Un. Let RN 2 Un and C � N . A
subpro�le R0C 2 U c such that R0i 6= Ri for all i 2 C is a pro�table deviation of coalition C
against pro�le RN if f(R0C ; RNnC)Pif(RN) for any agent i 2 C.

Pro�table deviations are usually called (group) manipulations in the standard de�nitions
of group and individual strategy-proofness. Throughout the paper we shall assume that
among pro�table deviations for single agents there is always one that is best.3

De�nition 2 A social choice function f on Un is manipulable at RN 2 Un by coalition
C � N if there exists a pro�table deviation of coalition C against pro�le RN ; say R0C 2 U c.
A social choice function is group strategy-proof if it is not manipulable by any coalition
C � N .

When we consider only deviations by single agent coalitions we have strategy-proofness.

De�nition 3 A social choice function f on Un is manipulable at RN 2 Un by agent i 2 N if
there exists a pro�table deviation of agent i against pro�le RN ; say R0i 2 U . A social choice
function is strategy-proof if it is not manipulable by any agent i 2 N .

Remark that, formally, strategy-proofness is a much weaker condition than group strategy-
proofness in any of its versions. In many environments and in spite of this de�nitional gap,
individual strategy-proof rules end up also being group.4 But, of course, in many other

3The existence of a best deviation is guaranteed when the number of alternatives, and those of preferences
is �nite. Moreover, the condition will also hold under standard assumptions.

4See Le Breton and Zaporovhets (2009), Barberà, Berga, and Moreno (2010), and Barberà, Berga, and
Moreno (2016).
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situations this equivalence may not hold, and even when there are attractive strategy-proof
rules, they are open to manipulation by groups. In this paper, we concentrate on a form of
manipulation that is intermediate between those of individual and group strategy-proofness
and that is based on the notion of credible pro�table deviations, those where no agent in
the deviating coalition can gain by not declaring those preferences he was supposed to use
as part of the group strategy. Formally,

De�nition 4 Let f be a social choice function on Un. Let RN 2 Un and C � N . We say
that R0C 2 U c a pro�table deviation of C against RN is credible if f(R0C ; RN jC)Rif(Ri; R0Cnfig; RNnC)
for all i 2 C and all Ri 2 U .

On other terms, a pro�table deviation by C from RN = (RC ; RNnC) is credible if R0C is
a Nash equilibrium of the game among agents in C, when these agents strategies are their
admissible preferences and the outcome function is f(�; RNnC):

De�nition 5 A social choice function f on Un is immune to credible pro�table devia-
tions if for any RN 2 Un, any C � N , there is no credible pro�table deviation of C against
RN (that is, for any pro�table deviation R0C 2 U c of C against RN there exists i 2 C such
that f(Ri; R0Cnfig; RNnC)Pif(R

0
C ; RN jC) for some Ri 2 U).

Immunity to credible pro�table deviations means that no pro�table deviation of any
coalition is credible at any pro�le. Observe that group strategy-proofness implies immunity
to credible pro�table deviations as de�ned above. However, in general the converse impli-
cation fails (see Proposition 1 below). Moreover, as Lemma 1 shows, immunity to credible
pro�table deviations implies strategy-proofness. And strategy-proofness implies immunity
to credible pro�table deviations by singletons.

Lemma 1 Any social choice function f on Un that is immune to credible pro�table devia-
tions is strategy-proof.

Proof. By contradiction, let RN 2 Un, i 2 N , and R0i 2 U such that R0i 6= Ri and
f(R0i; RNnfig)Pif(RN) and R

0
i be such that it is a best deviation for agent i (which, as

already stated, we assume to exist). By immunity to credible pro�table deviations, there
exists Ri 2 U , such that f(Ri; RNnfig)Pif(R0i; RNnfig) which contradicts that R0i is a best
deviation for i.

3 Applications

In this section we illustrate the strength of our new de�nition, which is more demanding
than individual but weaker than group strategy-proofness, by characterizing some families
of rules that are individually but not group strategy-proof and showing that some of them
satisfy our new requirement but others do not. Speci�cally, we do that in a context where
alternatives are multidimensional and preferences are separable.
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Here is our framework. Let K= f1; :::; Kg be a �nite set of K � 2 coordinates and for
each k 2 K, let Bk = [ak; bk] with ak < bk be an integer interval.5 Our alternatives are

K-dimensional vectors in B =
KQ
k=1

Bk. To stress the role of a set of coordinates kS, we will

write x =
�
xkS ; xKnkS

�
2 B. We endow B with the L1-norm. That is, for any x 2 B,

kxk =
KX
k=1

j xk j :

Given x; y 2 B, the minimal box containing x and y is de�ned by

MB(x; y) = fz 2 B : kx� yk = kx� zk+ kz � ykg :
We restrict attention to the case where individual preferences are antisymmetric and

thus, have a unique best alternative that we denote by � (Ri).
We now impose a restriction on preferences which is a natural extension of single-

peakedness to the multidimensional setting.

De�nition 6 A preference Ri 2 U is (multidimensional) single-peaked if for any z; y 2 B,
if y 2MB (z; � (Ri)) then yRiz.

Let S � U be the set of (multidimensional) single-peaked preferences on B. Under this
preference restriction � (Ri) = (� 1 (Ri) ; :::; �K (Ri)) 2 B where � j (Ri) is the best (or top)
alternative of Ri in dimension j.
It is known in the literature (Barberà, Gul, and Stacchetti 1993) that the class of multi-

dimensional Generalized Median Voter Schemes (GMVS) are the only strategy-proof social
choice functions in our setting, where multidimensional GMVS can be written as K unidi-
mensional GMVS, one for each dimension. In this paper we restrict attention to a particular
subclass of GMVS that is an K-dimensional extension of what Moulin (1980) called gener-
alized Condorcet winner rules.
For each k 2 K, let Pk = fp1k; :::; pn�1k g be an ordered list of n � 1 values in Bk where

p1k � ::: � pn�1k . If all values are the same we call the list degenerate. In what follows, we
shall use K lists of such values, one for each dimension, as de�nitional parameters.

De�nition 7 We say that f : Sn ! B, f = (f1; :::; fK) is a generalized Condorcet winner
rule if for any pro�le RN 2 Sn, for any k 2 K, fk(RN) = medf� k(R1); :::; �K(Rn); p1k; :::; pn�1k g,
where Pk(f) = fp1k; :::; pn�1k g is a list of parameters in Bk.6

We remark that the rules we just de�ned are the only anonymous, onto, strategy-proof
rules in this context.

5Note that for K = 1 any strategy-proof rule is also group strategy-proof. Hence, it is also immune to
credible pro�table deviations.

6The notation med denotes the median(s) of an ordered list. In the present de�nition this will be unique.
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3.1 Choosing sets of candidates

The domain of separable preferences is important on the literature of strategy-proofness,
since it has been proven to admit rich and attractive classes of non-manipulable social
choice functions. Before engaging in a full analysis of those rules that are immune in a
general framework, we consider the simple case, proposed in Barberà, Sonnenschein, and
Zhou (1991), where in each dimension Bk can only take two values, say ak = 0 and bk = 1.
Then, alternatives are vectors of zeros and ones, that we can interpret as the characteristic
function of set of objects, where xk = 0 means that the k-th object is not in the set, and
xk = 1 means that it does belong. We follow Barberà, Sonnenschein, and Zhou (1991) in
interpreting this case as one where there exists a set O of K potential candidates or objects
out of which we must choose the new members of a club or what items will form a shopping
list and we adapt our notation accordingly. The following de�nition of separability which
applies to this context, is equivalent to the one we de�ne in the general case.7

Individual preferences are linear orders on the set 2O (including the empty set). Given
any preference R on 2O, we de�ne the set of "good" objects G(O; R) = fok 2 O : fokgP?g
and the set of "bad" objects OnG(O; R) = fok 2 O : ?Pfokgg.

De�nition 8 R is an individual separable preference on 2O if and only if for any set T and
any object ol =2 T , T [ folgPT if ol 2 G(O; R).

In words, adding a new good object to any set makes the union better than the original set
and adding a bad object makes it worse. Now S denote the set of all separable preferences.
In this setting there exist strategy-proof social choice functions. In particular, the set of

such functions that are anonymous and neutral coincides with the family of voting by quota
rules, f : Sn ! 2O de�ned as follows:

De�nition 9 Let q 2 f1; :::; ng. The social choice function f on Sn de�ned so that for any
RN 2 Sn,

f(RN) = fok 2 O : jfi : ok 2 G(O; Ri)gj � qg
is called voting by quota q.

However, none of these voting by quota rules are group strategy-proof. And yet, we�ll
show that some of them are immune to credible pro�table deviations, while others are not.
Before providing a characterization theorem allowing to distinguish between those rules

that are immune and those that are not, we present two examples with 5 voters and 2
candidates. Notice that the following table is the set of all separable preferences when
K = 2.

R1 R2 R3 R4 R5 R6 R7 R8

? ? o1 o1 o2 o2 fo1; o2g fo1; o2g
o1 o2 ? fo1; o2g ? fo1; o2g o1 o2
o2 o1 fo1; o2g ? fo1; o2g ? o2 o1

fo1; o2g fo1; o2g o2 o2 o1 o1 ? ?
7See also Border and Jordan (1983), Le Breton and Sen (1999), Le Breton and Weymark (1999) who

have analyzed a model with separable preferences in continuous multidimensional spaces.
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Example 1 Voting by quota 1: each agent declares her best set of objects and any object
that is declared as good by some agent is selected.
Consider the pro�le where R1 = R3, R2 = R5 and for any other agent Ri = R1 the outcome
would be fo1; o2g, whereas 1 and 2 could vote for ? and get a preferred outcome.
This proves that the rule is group manipulable. Notice, however, that after having agreed on
voting for empty, any of the two agents could simply keep voting for their preferred candidate,
and obtain an even better result, provided the other sticks to her announcement. Hence, this
group manipulation will not be credible. We leave it to the reader to check that any other
group manipulation under this rule will fail to be credible. Hence, in this example, voting by
quota 1 is immune to credible group manipulation. As we shall see the result generalizes.

Example 2 Voting by quota 3: each agent declares her best set of objects and any object
that is declared as good by at least three agent is selected.
Consider now the pro�le where R1 = R2 = R3, R3 = R4 = R5 and R5 = R7. Then,
the outcome would be fo1; o2g. Now, if agents 1 and 2 agree to vote for ?, and so do
agents 3 and 4, the coalition of these four agents can manipulate and have the outcome to
be ?, that they all prefer to fo1; o2g. Hence, the rule is group manipulable. Moreover, this
particular manipulation is credible, because as long as the rest of deviators complies with the
agreement, no single agent can pro�table deviate from it. Hence, the rule is not immune to
credible deviations in this case.
Notice, however, that there would be other pro�table deviations that would not be credible.
For example, the one where only 1 and 3 agreed to drop their support to their preferred
alternative.

In fact, we can prove the following general result.

Proposition 1 Let n = 2 or n > 3. Then, voting by quota 1 and n are the only voting by
quota rules satisfying immunity to credible pro�table deviations.

Proof. To prove that voting by quota 1 is never subject to credible pro�table deviations,
notice that any pro�table deviation by a group must involve agents who do not vote for
some of the candidates they like (since they can always get them without anyone�s help). In
exchange these agents can get others not to vote for candidates that they dislike.
Let RN 2 Sn, C be a coalition that has a pro�table deviation R0C against RN . Note that
f(RN) " f(R0C ; RNnC) (otherwise, if f(RN) $ f(R0C ; RNnC), by quota 1, for any candidate
o 2 f(R0C ; RNnC)nf(RN), o =2 G(O; Ri) for any i 2 N . By separability, for any i 2 N ,
f(RN)Pif(R

0
C ; RNnC) and R

0
C could not be a pro�table deviation, which is a contradiction).

Thus, there exists a candidate o such that o 2 f(RN)nf(R0C ; RNnC). Observe that for each
such candidate o 2 f(RN)nf(R0C ; RNnC), since f is voting by quota 1, there is at least
one individual i 2 C such that o 2 G(O; Ri) and o =2 G(O; R0i). But now if i declares
a preference Ri such that G(O; Ri) = G(O; R0i) [ fog, the outcome f(Ri; R0Cnfig; RNnC) =
f(R0C ; RNnC)[fog, which is, by separability, strictly better for i under Ri than what he would
get by following the agreed upon strategy. Therefore, no pro�table deviation is credible under
quota 1. A similar argument applies for quota n.

6



This already proves the proposition for the case n = 2 since there only the two extreme
quotas can be used. From now on we treat the case n > 3.
To prove that any voting by quota rule q, q 6= f1; ng violates immunity to credible pro�table
deviations we construct pro�les against which there is a credible pro�table deviation by
some coalition. We begin by the case K = 2 and then argue that this can be embedded in
a general pro�le presenting the same deviations whenever K > 2.

Let n be odd. We distinguish three subcases.
(1) q > n�1

2
+ 1. Let RN be as follows: the preferences of any agent i in a set of n�1

2

agents are such that o1Pi fo1; o2gPi?, the preferences of any agent j in a di¤erent set of
n�1
2
agents are such that o2Pj fo1; o2gPj?, and the preferences of the remaining agent l

is such that �(Rl) = fo1; o2g. Observe that f(RN) = ?. Let C be the coalition of all
agents except agent l, let R0C such that each agent i 2 C, �(R0i) = fo1; o2g : Observe that
since f(R0C ; RNnC) = fo1; o2g, R0C is a pro�table deviation of C against RN . Finally, R0C is
credible since no agent can change the outcome by a unilateral deviation since n > 3.
(2) q = n�1

2
+ 1. Let RN be as follows: the preferences of any agent i in a set of n�12 agents

are such that o1Pi fo1; o2gPi?, the preferences of any agent j in a di¤erent set of n�12 agents
are such that o2Pj fo1; o2gPj?, and the preferences of the remaining agent l is such that
�(Rl) = ?. Observe that f(RN) = ?. Let C be the coalition of all agents except agent l, let
R0C such that each agent i 2 C, �(R0i) = fo1; o2g : Observe that since f(R0C ; RNnC) = fo1; o2g,
R0C is a pro�table deviation of C againstRN . Finally, R

0
C is credible since no agent can change

the outcome by a unilateral deviation since n > 3.
(3) q < n�1

2
+ 1. Let RN be as follows: the preferences of any agent i in a set of n�12 agents

are such that o1Pi?Pi fo1; o2g, the preferences of any agent j in a di¤erent set of n�12 agents
are such that o2Pj?Pj fo1; o2g, and the preferences of the remaining agent l is such that
�(Rl) = ?. Observe that f(RN) = fo1; o2g. Let C be the coalition of all agents except agent
l, let R0C such that each agent i 2 C, �(R0i) = ?: Observe that since f(R0C ; RNnC) = ?, R0C
is a pro�table deviation of C against RN . Finally, R0C is credible since no agent can change
the outcome by a unilateral deviation since n > 3.

Let n be even. We distinguish two subcases.
(1) q > n

2
. Let RN be as follows: the preferences of any agent i in a set of n2 agents are such

that o1Pi fo1; o2gPi?, the preferences of any agent j in a di¤erent set of n2 agents are such
that o2Pj fo1; o2gPj?. Observe that f(RN) = ?. Let C be the coalition of all agents, let R0C
such that each agent i 2 C, �(R0i) = fo1; o2g : Observe that since f(R0C ; RNnC) = fo1; o2g,
R0C is a pro�table deviation of C against RN . Finally, R0C is credible since no agent can
change the outcome by a unilateral deviation.
(2) q � n

2
. Let RN be as follows: the preferences of any agent i in a set of n2 agents are such

that o1Pi?Pi fo1; o2g, the preferences of any agent j in a di¤erent set of n2 agents are such
that o2Pj?Pj fo1; o2g. Observe that f(RN) = fo1; o2g. Let C be the coalition of all agents,
let R0C such that each agent i 2 C, �(R0i) = ?: Observe that since f(R0C ; RNnC) = ?, R0C
is a pro�table deviation of C against RN . Finally, R0C is credible since no agent can change
the outcome by a unilateral deviation.

This is easily extended to the case K > 2 by considering pro�les where agents preferences
are like the ones described in each case above for objects 1 and 2, while all the agents share
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exactly the same preferences concerning other objects for all cases analyzed (for example,
ok 2 G(O; bRi) for each ok 2 Onfo1; o2g, each i 2 N and each individual preference bRi used
in the analyzed cases).

Our next proposition covers the case n = 3, which is not contemplated by the previous
one.

Proposition 2 When n = 3 and K = 2, any voting by quota rule is immune to credible
pro�table deviations. When n = 3 and K � 3, voting by quota 1 and 3 are the only rules in
our class satisfying immunity to credible pro�table deviations.

Proof. Let N = f1; 2; 3g and K = 2. For voting by quota 1 and 3 the same argument
in Proposition 1 applies. Consider voting by quota 2. As already remarked in Barberà,
Sonnenschein, and Zhou (1991) this rule is not only strategy-proof but also e¢ cient. Thus
the only coalitions with pro�table deviations consist of two agents. Let RN , C = fi; jg, and
R0C be a pro�table deviation of C against RN .
To be a pro�table deviation, observe that, by separability and voting by quota 2, either (1)
both candidates are chosen under (R0C ; RN jC) but none under RN ; or (2) no candidate is
chosen under (R0C ; RN jC) but both are chosen under RN , or (3) only one candidate is chosen
under RN and only the other candidate is chosen under (R0C ; RN jC).
In the �rst case, for each candidate, one of the agents in C considered that candidate not
good under Ri but good under R0i. In the second case, for each candidate, one of the agents
in C considered that candidate good under Ri but not good under R0i. In the third case,
what said in the second case holds for the candidate chosen under RN and what said in the
�rst case holds for the candidate chosen under (R0C ; RN jC).
In the three cases, either declaring Ri such that a good candidate under R0i not to be un-
der Ri, or supporting a bad one will be an individual pro�table deviation with respect to
(R0C ; RN jC). Thus, R

0
C is not credible.

Let N = f1; 2; 3g and K = 3. For voting by quota 1 and 3 the same argument in Propo-
sition 1 applies. To prove that voting by quota 2 violates immunity to credible pro�table
deviations we provide an example of a credible pro�table deviation against a pro�le. Let RN
be as follows: the preferences of agent 1 are such that �(R1) = o1 and fo1; o2; o3gP1?, the
preferences of agent 2 are such that �(R2) = o2 and fo1; o2; o3gP2?, and the preferences of
agent 3 are such that �(R3) = o3 and fo1; o2; o3gP3?. Observe that f(RN) = ?. Let C = N ,
and R0N such that each agent i 2 C, �(R0i) = fo1; o2; o3g. Since f(R0N) = fo1; o2; o3g, R0N is a
pro�table deviation of C against RN . Finally, R0N is credible since no agent can change the
outcome by a unilateral deviation.
This is easily extended to the caseK > 3 by considering pro�les where agents preferences are
like the ones described in each case above for objects 1, 2, and 3, while all the agents share
exactly the same preferences concerning other objects for all cases analyzed (for example,
ok 2 G(O; bRi) for each ok 2 Onfo1; o2; o3g, each i 2 N and each individual preference bRi
used in the analyzed cases).

8



3.2 The general case: choosing from a grid

We now analyze the case where the set of options in each dimension is not binary.

Proposition 3 Let n > 3. Let f be a generalized Condorcet winner rule. If f is de�ned by
lists of parameters that are non-degenerate in at least two dimensions, then f is not immune
to credible pro�table deviations.

Proof. Let f be a generalized Condorcet winner rule with two dimensions, say 1 and 2, for
which P1(f) and P2(f) are not degenerate. Consider the median(s), medP1(f) andmedP2(f)
of these parameters�lists. These medians may be unique or consist of two contiguous points,
say med�Pk(f) < med+Pk(f), for each k 2 f1; 2g.
In all cases below, in any pro�le we will de�ne the preferences of each agent in N concerning
dimensions di¤erent from 1 and 2 to be the same and with top at some point xk in Bk,
k 2 Knf1; 2g.
Assume �rst that for each k 2 f1; 2g, med�Pk(f) 6= med+Pk(f). This can only happen if n
is odd and thus the number of parameters is even. Consider a partition of N into three sets,
A, A0, and l where l is a singleton and such that #A = #A0. Let the projections of RN in di-
mensions 1 and 2 be as follows. For agents in A, let the k�dimensional top bemed+Pk(f) for
k 2 f1; 2g. For agents in A0, let the k�dimensional top bemed�Pk(f) for k 2 f1; 2g. Agent l
has the 1�dimensional top atmed+P1(f) and the 2� dimensional top atmed�P2(f). Also as-
sume for agents inA[A0 that (med�P1(f);med+P2(f); xKnf1;2g)Pi(med+P1(f);med�P2(f); xKnf1;2g).
Observe that fk(RN) = � k(Rl) for each k 2 f1; 2g and fk(RN) = xk for each k 2 Knf1; 2g:
This is because, for each k 2 f1; 2g, � k(Rl) tie-breaks when computing fk as the median
of all tops and parameters in Bk. Let C = A [ A0 and let R0C be such that for each agent
i 2 C, � 1(R0i) = med�P1(f), � 2(R0i) = med+P2(f):

8 Observe that fk(R0C ; RNnC) = � k(R
0
i)

for k 2 f1; 2g, and fk(R0C ; RNnC) = xk for each k 2 Knf1; 2g. This is because, for each
k; fk(R

0
C ; RNnC) is the top for individual preferences in (R

0
C ; RNnC) for n � 1 agents and it

coincides withmed�P1(f) in dimension 1 and withmed+P2(f) in dimension 2. By de�nition,
this shows that R0C is a pro�table deviation of C against RN .

Moreover, for each dimension k 2 f1; 2g, since fk(R0C ; RNnC) is eithermed�Pk(f) ormed+Pk(f)
and, given that n > 3; there are at least two parameters smaller or equal than fk(R0C ; RNnC) =
med�Pk(f) or greater or equal than fk(R0C ; RNnC) = med

+Pk(f).

Therefore, fk(R0C ; RNnC) receives at least n + 1 total votes for each k 2 f1; 2g. Hence, the
pro�table deviation R0C is credible and f is not immune.

Assume now that for at least some k 2 f1; 2g, med�Pk(f) = med+Pk(f) = medPk(f).
Remember that med�Pk(f) 6= med+Pk(f) can only hold if n is odd and therefore the num-
ber of parameters is even. Because of that in the case where the above equality holds for
only one of the two dimensions but not for the other can only happen when n is odd. This
distinction is used along the rest of the proof because in one case a partition will only use
two sets of agents A, A0 while in other cases we will have to add a singlet l to it.

8In words, to de�ne R0C notice that by changing their vote the agents in A vote for the tops of those in
A0 in dimension 1, while agents in A0 vote for the top of those in A in dimension 2.
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For n odd, let A, A0, and agent l be the elements of a partition of N such that #A = #A0 =
n�1
2
. For n even, let, A, A0 a partition of N such that #A = #A0 = n

2
. Let RN be as follows.

The preferences of agents in A are such that in the dimension 1 the top is either med+P1(f)
when med�P1(f) 6= med+P1(f), or medP1(f), otherwise. In dimension 2 the top is either
med+P2(f) when med�P2(f) 6= med+P2(f), or the highest parameter strictly smaller than
medP2(f) if it exists and med�P2(f) = med+P2(f); or the lowest parameter strictly greater
than medP2(f), otherwise. The preferences of agents in A0 are such that in dimension 1 the
top is either med�P1(f) when med�P1(f) 6= med+P1(f), or the highest parameter strictly
smaller than medP1(f) if it exists and med�P1(f) = med+P1(f); or the lowest parameter
strictly greater than medP1(f), otherwise. In dimension 2 the top is either med�P2(f) when
med�P2(f) 6= med+P2(f), or medP2(f), otherwise.
Preferences of agent l (only required if n is odd) are de�ned as follows: Rl is such that
in dimension 1 agent l�s top is either � 1(Rj), j 2 A when med�P1(f) 6= med+P1(f), or
the highest parameter strictly smaller than medP1(f) if such parameter exists or the lowest
parameter strictly greater than medP1(f), otherwise. In dimension 2 the top of agent l is
either either � 2(Ri), i 2 A0 whenmed�P2(f) 6= med+P2(f), or the highest parameter strictly
smaller than medP2(f) if such parameter exists or the lowest parameter strictly greater than
medP2(f), otherwise.
From now on let i 2 A0 and j 2 A. We also assume that for any agent m 2 A [
A0; (� 1(Ri); � 2(Rj); xKnf1;2g) Pm(� 1(Rj); � 2(Ri); xKnf1;2g). Observe that fk(RN) = � k(Rl) if
med�Pk(f) 6= med+Pk(f), and fk(RN) = medPk(f) otherwise for each k 2 f1; 2g, and that
fk(RN) = xk for each k 2 Knf1; 2g. This is because, for each k 2 f1; 2g, � k(Rl) tie-breaks
when computing fk as the median of all tops and parameters in Bk in the case where only
for one k 2 f1; 2g, med�Pk(f) = med+Pk(f) = medPk(f) and thus n is odd. And for each
k 2 f1; 2g, medPk(f) tie-breaks when computing fk as the median of all tops and parameters
in Bk in the case where for both k 2 f1; 2g, med�Pk(f) = med+Pk(f) = medPk(f). Let C =
A [A0 and let R0C be such that for each agent j 2 A, � 1(R0j) = � 1(Ri) and � k(R0j) = � k(Rj)
for each k 2 Knf1g, and for each i 2 A0, � 2(R0i) = � 2(Rj) and � k(R0i) = � k(Ri) for each
k 2 Knf2g. Observe that fk(R0C ; RNnC) = � k(R

0
i) for k 2 f1; 2g, and fk(R0C ; RNnC) = xk

for each k 2 Knf1; 2g. This is because, for each k where med�Pk(f) = med+Pk(f),
fk(R

0
C ; RNnC) is the top for individual preferences in (R

0
C ; RNnC) for n agents. For each

k where med�Pk(f) 6= med+Pk(f), fk(R0C ; RNnC) is the top for the preferences for n � 1
agents in (R0C ; RNnC) and coincides either with med

�Pk(f) or med+Pk(f). By de�nition,
this shows that R0C is a pro�table deviation of C against RN .
Moreover, for the dimensions where med�Pk(f) = med+Pk(f) there is a parameter at
fk(R

0
C ; RNnC). For the dimensions where med

�Pk(f) 6= med+Pk(f), fk(R0C ; RNnC) is either
med�Pk(f) ormed+Pk(f) and, given that n > 3; there are at least two parameters smaller or
equal than fk(R0C ; RNnC) = med

�Pk(f) or greater or equal than fk(R0C ; RNnC) = med
+Pk(f).

Therefore, fk(R0C ; RNnC) receives at least n + 1 total votes for each k 2 f1; 2g. Hence, the
pro�table deviation R0C is credible and f is not immune.

The following claims will be crucial for the proofs of immunity in the following proposi-
tions. In all the claims we consider a generalized Condorcet winner rule f , and we assume
that R0C is a pro�table deviation of C against RN . We will use the fact that by the sep-
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arability condition of individual preferences R, for any xk; yk and �xed xk0 ; yk0 2 Bk0 for
k0 2 Knfkg, (xk; xKnfkg)P (yk; xKnfkg) if and only if (xk; yKnfkg)P (yk; yKnfkg).

Claim 1 For any k 2 K and R0C de�ned as above, � k0(Ri) 6= � k0(R0i) for some k0 2 Knfkg,
and some i 2 C.

Claim 1 holds because unidimensional generalized Condorcet winners are group strategy-
proof and by separability only the top in dimension k matters. In what follows we will refer
to this claim by saying that f is group strategy-proof in each dimension k. Therefore, if
fk(R

0
C ; RNnC) 6= fk(RN) there is at least one agent i 2 C such that

�
fk(RN); xKnfkg

�
Pi�

fk(R
0
C ; RNnC); xKnfkg

�
. Formally:

Remark If fk(R0C ; RNnC) 6= fk(RN) and fk0(R0C ; RNnC) = fk0(RN) for all k0 2 Knfkg
then there exists i 2 C such that f(RN)Pif(R0C ; RNnC).
In words, we say that there is an agent i 2 C who is losing according to Ri at (R0C ; RNnC)

in dimension k. Since the original preferencesRi remains �xed in all proofs, we will informally
say that an agent is losing at some pro�le in some dimension. Similarly, we could de�ne the
concept of an agent winning.

Claim 2 There exist k; k0 2 K and i; j 2 C such that
�
fk(RN); xKnfkg

�
Pi
�
fk(R

0
C ; RNnC); xKnfkg

�
,�

fk(R
0
C ; RNnC); xKnfkg

�
Pj
�
fk(RN); xKnfkg

�
; for any xKnfkg 2 BKnfkg,

�
fk0(R

0
C ; RNnC); xKnfk0g

�
Pi�

fk0(RN); xKnfk0g
�
; and

�
fk0(RN); xKnfk0g

�
Pj
�
fk0(R

0
C ; RNnC); xKnfk0g

�
, for any xKnfk0g 2 BKnfk0g.

To show it, consider for each dimension k the partition of agents in C between the ones
winning (Wk) and the ones losing (Lk) at (R0C ; RNnC) in dimension k. Notice that, by
de�nition of pro�table deviation, each agent in C must be winning at (R0C ; RNnC) in some
dimension k, and as remarked after Claim 1 there must be another agent in C losing at
(R0C ; RNnC) in that dimension k. For each agent in Lk there exists a dimension k

0 where he
wins. Take one agent in Lk; if some of the agents in Wk belongs to Lk0, the result holds.
Otherwise, Wk0 ) Wk. Take another agents in Lk and repeat the same argument. Since
there is a �nite number of agents we will obtain the result.

Claim 3 Let k be such that Pk(f) is degenerate. Let i 2 C and j 2 C be winning and losing
at (R0C ; RNnC) in dimension k, respectively. Then, the pro�table deviation R

0
C is not credible.

The sketch of the proof is as follows. Consider two cases. In the �rst case, in RN all
agents�k- dimensional top are placed in the same side of the parameters�unique position
(Pk(f) is degenerate). fk(RN) is the top closest to the single parameter. For R0C to be
a pro�table deviation, all agents with k-dimensional top in fk(RN) must belong to C and
for these agents, � k(R0i) must be such that is even further from the single parameter. Note
that all these agents would be losing at (R0C ; RNnC) in that dimension k. Then, any of
these agents, say i, announcing Ri such that � k(Ri) = � k(Ri) and for each k0 2 Knfkg,
� k0(Ri) = � k0(R

0
i) would be winning at (Ri; R

0
Cnfig; RNnC) in dimension k and by separability

he would be better o¤ f(Ri; R0Cnfig; RNnC)Pif(R
0
C ; RNnC) which means that R

0
C is not a

credible pro�table deviation. In the second case, in both sides of the single parameter there
is at least one agents� top given RN . Thus, fk(RN) is the single parameter. For R0C to
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be a pro�table deviation, all agents in one side of the single parameter belongs to C and
they should announce � k(R0i) in the other side of the single parameter. Note that all these
agents would be losing at (R0C ; RNnC) in that dimension k. Then, any of these agents, say
i, announcing Ri such that � k(Ri) = � k(Ri) and for each k0 2 Knfkg, � k0(Ri) = � k0(R

0
i)

would be winning at (Ri; R0Cnfig; RNnC) in dimension k and by separability he would be
better o¤f(Ri; R0Cnfig; RNnC)Pif(R

0
C ; RNnC) which means that R

0
C is not a credible pro�table

deviation.

Proposition 4 Let n � 2. Let f be a generalized Condorcet winner rule. If f is de�ned by
lists of parameters that are degenerate in at least K � 1 dimensions, then f is immune to
credible pro�table deviations.

Proof. Consider f as in the statement. Let RN 2 Sn, C � N , and R0C 2 Sc be a pro�table
deviation of C against RN . By Claim 2, there exist k; k0 2 K and i; j 2 C such that�

fk(RN); fKnfkg(R
0
C ; RNnC)

�
Pi
�
fk(R

0
C ; RNnC); fKnfkg(R

0
C ; RNnC)

�
;�

fk(R
0
C ; RNnC); fKnfkg(R

0
C ; RNnC)

�
Pj
�
fk(RN); fKnfkg(R

0
C ; RNnC)

�
;�

fk0(R
0
C ; RNnC); fKnfk0g(R

0
C ; RNnC)

�
Pi
�
fk0(RN); fKnfk0g(R

0
C ; RNnC)

�
; and�

fk0(RN); fKnfk0g(R
0
C ; RNnC)

�
Pj
�
fk0(R

0
C ; RNnC); fKnfk0g(R

0
C ; RNnC)

�
:

By hypothesis, either Pk(f) or Pk0(f) is degenerate (or both).9 By Claim 3, R0C is not a
credible pro�table deviation.

Proposition 5 Let n = 3. Any generalized Condorcet winner rule de�ned by lists of pa-
rameters such that are non degenerate in two dimensions is immune to credible pro�table
deviations. Any generalized Condorcet winner rule de�ned by non degenerate lists of para-
meters in at least three dimensions is not immune to credible pro�table deviations.

Proof. To prove the �rst statement, let f be a generalized Condorcet winner rule with
lists of parameters, denoted in each dimension k as p�k � p+k ; and such that they are non
degenerate in exactly two dimensions. To prove that f is immune to credible pro�table
deviations, let RN 2 S3, C � N = f1; 2; 3g, and R0C 2 Sc be a pro�table deviation of C
against RN . If the pro�table deviation is such that there is an agent that is winning in a
dimension k for which Pk(f) is degenerate, by Claim 3, R0C could not be a credible pro�table
deviation. Thus, agents must be winning at (R0C ; RNnC) in dimensions k for which Pk(f)
is not degenerate. By Claim 2, there must be agents in C winning at (R0C ; RNnC) in the
two dimensions with non degenerate list of parameters Pk(f). Let�s call them dimensions
1 and 2. By strategy-proofness, C has at least two agents. Without loss of generality, by
anonymity and Claim 2, suppose that agents 1 and 2 belong to C and that agent 1 is winning
while agent 2 is losing at (R0C ; RNnC) in dimension 1 and the opposite holds in dimension 2.
Consider the following two cases depending on the size of the deviating coalition.

Case 1: C = f1; 2g.
9For n = 2 any list of parameters is degenerate in all dimensions since all parameters take the same value.
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Since agent 3�s preferences are �xed, we can assume now that we have 3 �xed parameters
in each dimension, two of them di¤erent: p�k , p

+
k , and � k(R3). Consider dimension 1. First,

observe that

f1(RN); f1(R
0
f1;2g; R3) 2

�
min

�
� 1(R3); p

�
1

	
;max

�
� 1(R3); p

+
1

	�
:

Since agent 1 is winning and agent 2 is losing at (R0f1;2g; R3) in dimension 1, then � 1(R1)must
be strictly placed on one side of f1(RN), while � 1(R2)must be weakly placed on the other side
of f1(RN). Moreover, for both i 2 f1; 2g, � 1(R0i) must be strictly in the same side of f1(RN)
and in fact in the same side as � 1(R1) is. Then, note that agent 2 announcing R2 such that
� 1(R2) = � 1(R2) and for each k 2 Knf1g, � k(R2) = � k(R02) would be winning at (R2; R01; R3)
in dimension 1 and by separability he would be better o¤ f(R2; R01; R3)P2f(R

0
f1;2g; R3) which

means that R0f1;2g is not a credible pro�table deviation.
Case 2: C = f1; 2; 3g.
Since R0N 2 Sn is a pro�table deviation of C against RN , agent 3 is winning at R0N in some
dimension. Without loss of generality, suppose that agent 3 is winning at R0N in dimension
1 (otherwise, by anonymity a similar argument would apply). We already assumed that
agent 1 is winning and agent 2 is losing at R0N in dimension 1. If f1(RN) 2

�
p�1 ; p

+
1

�
, then

� 1(R2) = f1(RN) since agent 2 is losing at R0N , and also both � 1(R1) and � 1(R3) must be
strictly on a di¤erent side of f1(RN). But then, R0C would not be a pro�table deviation where
agents 1 and 3 are winning at R0N in dimension 1. Thus, f1(RN) � p�1 or f1(RN) � p+1 : Sup-
pose f1(RN) � p�1 (a symmetric argument would apply for the other case). Observe �rst that
for each i 2 f1; 2; 3g, � 1(Ri) � f1(RN): Since agent 2 is the only agent losing at R0N in dimen-
sion 1, � 1(R2) = f1(RN) and � 1(R1); � 1(R3) < f1(RN), and thus f1(R0C ; RNnC) < f1(RN).
Then, note that agent 2 announcing R2 such that � 1(R2) = � 1(R2) and for each k 2 Knf1g,
� k(R2) = � k(R

0
2) would be winning at (R2; R

0
f1;3g) in dimension 1 and by separability he

would be better o¤ f(R2; R0f1;3g)P2f(R
0
f1;2;3g) which means that R

0
f1;2;3g is not a credible

pro�table deviation.

To prove the second statement, let f be a generalized Condorcet winner rule with lists of
parameters, denoted in each dimension k as p�k � p+k ; and such that they are non degenerate
in at least three dimensions. Assume they are dimensions 1, 2, and 3. To prove that f is
not immune to credible pro�table deviations, we provide an example of a credible pro�table
deviation against a pro�le. In any pro�le we will de�ne the preferences of each agent in N
concerning dimensions di¤erent from 1, 2, and 3 to be the same and with top at some point
xk in Bk, k 2 Knf1; 2; 3g.
Let RN 2 S3 be as follows in dimensions 1, 2, and 3: de�ne the preferences of agent 1 such
that �(R1) =

�
p+1 ; p

�
2 ; p

�
3

�
and

�
p+1 ; p

+
2 ; p

+
3 ; xKnf1;2;3g

�
P1
�
p�1 ; p

�
2 ; p

�
3 ; xKnf1;2;3g

�
, the prefer-

ences of agent 2 such that �(R2) =
�
p�1 ; p

+
2 ; p

�
3

�
and

�
p+1 ; p

+
2 ; p

+
3 ; xKnf1;2;3g

�
P2
�
p�1 ; p

�
2 ; p

�
3 ; xKnf1;2;3g

�
,

and the preferences of agent 3 such that �(R3) =
�
p�1 ; p

�
2 ; p

+
3

�
and

�
p+1 ; p

+
2 ; p

+
3 ; xKnf1;2;3g

�
P3�

p�1 ; p
�
2 ; p

�
3 ; xKnf1;2;3g

�
. Observe that f(RN) =

�
p�1 ; p

�
2 ; p

�
3 ; xKnf1;2;3g

�
. Let C = N , and R0N

such that each agent i 2 C, �(R0i) =
�
p+1 ; p

+
2 ; p

+
3

�
. Since f(R0N) =

�
p+1 ; p

+
2 ; p

+
3

�
, R0N is a

pro�table deviation of C against RN . Finally, R0N is credible since no agent can change the
outcome by a unilateral deviation.
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4 Some alternative formulations of credibility, and their
consequences

We believe that our de�nition of a credible deviation is quite attractive. But others could
be conceivable, and in this section we shall discuss other possible proposals, and relate them
to ours.
To favor the comparison, let us go back to the interpretation of credibility that we already

proposed after De�nition 4. A pro�table deviation by C from RN = (RC ; RNnC) is credible
if R0C is a Nash equilibrium of the game among agents in C, when these agents strategies
are their admissible preferences and the outcome function is f(�; RNnC): Starting from this,
we shall discuss, then, three possible variants of the credibility concept.
The �rst variant will be one where, instead of letting agents in C to have any choice of

preferences as a strategy, we restrict them to either use strategy R0i or to revert to strategy
Ri. The resulting notion of a credible deviation will be stronger than ours. However, we�ll
show that the set of rules that are immune to credible deviations will be the same (after
a minimal quali�cation) under either de�nition. This is expressed in Proposition 6 and it
explains why we do not give new names to the concepts that derive from that approach.
A second variant will require that in order to be (extensively) credible, the deviation

R0C should be a Nash equilibrium for the game where all agents (whether or not they are
part of C) can play any preference, and f is the outcome function. If the initial function
f is assumed to be strategy-proof (an assumption that we do not need under our original
de�nition), then again the set of immune rules will still be the same under either de�nition
(see Proposition 7). However, the equivalence is not true if our f function is not a priori
restricted to be strategy-proof, as shown in Example 3.
A third variant of our de�nition of credibility would result from simply changing our

original one, but ask the deviation to be a strong Nash, rather than a Nash equilibrium.
The rationale for such proposal would be to allow for several agents to coordinate when
defecting from the agreed upon joint manipulation. We�ll show that under this de�nition,
all of the rules we consider will be immune to credible pro�table deviations (see Proposition
8).10

We now present formal arguments to make the preceding discussion more precise. We
also state some results and their proofs are included in the Appendix.

De�nition 10 Let f be a social choice function on Un. Let RN 2 Un and C � N .
We say that R0C 2 U c a pro�table deviation of C against RN is (type 1) credible if
f(R0C ; RN jC)Rif(Ri; R

0
Cnfig; RNnC) for all i 2 C. A social choice function f on Un is im-

mune to (type 1) credible pro�table deviations if for any RN 2 Un, any C � N , there
is no (type 1) credible pro�table deviation of C against RN .

Proposition 6 Any social choice function f on Un is immune to credible pro�table devia-
tions if and only if f is immune to (type 1) credible pro�table deviations.

10The same will hold if instead allowing agents to use any preferences, they are only assumed to use their
true and the manipulative one.
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De�nition 11 Let f be a social choice function on Un. Let RN 2 Un and C � N .
We say that R0C 2 U c a pro�table deviation of C against RN is (type 2) credible if
f(R0C ; RN jC)Rif(Ri; R

0
Cnfig; RNnC) for all i 2 N and all Ri 2 U . A social choice func-

tion f on Un is immune to (type 2) credible pro�table deviations if for any RN 2 Un,
any C � N , there is no (type 2) credible pro�table deviation of C against RN .

Proposition 7 Any strategy-proof social choice function f on Un is immune to credible
pro�table deviations if and only if f is immune to (type 2) credible pro�table deviations.

The following example shows that the latter immunity concept does not imply strategy-
proofness. Therefore, the concept may be useful to apply in contexts where strategy-
proofness is not to be expected, but one may still be interested in discussing the diversity of
manipulative actions by groups of voters.

Example 3 Immunity to (type 2) credible deviations does not imply strategy-proofness un-
der appropriately restricted domains.
The following table is the set of all admissible separable preferences when K = 2, for agents
1 and 2:

R11 R21 R31 R41 R12 R22 R32 R42
? o1 o1 fo1; o2g ? o2 o2 fo1; o2g
o1 ? fo1; o2g o1 o2 ? fo1; o2g o2
o2 fo1; o2g ? o2 o1 fo1; o2g ? o1

fo1; o2g o2 o2 ? fo1; o2g o1 o1 ?

Suppose the following social choice function:

f R12; R
2
2 R32; R

4
2

R31; R
4
1 o1 o2

R11; R
2
1 o2 o1

Note that in the direct revelation game induced by this social choice function, no agent has
a dominant strategy. Hence, the rule is not strategy-proof (thus, violating immunity to both
credible and (type 1) credible pro�table deviations). Also notice that the grand coalition has
no pro�table deviation. Hence, all pro�table deviations involve a single agent, and for each
one of them, the remaining agent can respond with a new pro�table deviation. Hence, the
social choice function is immune to (type 2) credible deviations, even if not strategy-proof.

De�nition 12 Let f be a social choice function on Un. Let RN 2 Un and C � N .
We say that R0C 2 U c a pro�table deviation of C against RN is strongly credible if
f(R0C ; RN jC)Rif(RS; R

0
CnS; RNnC) for all S � C, for all RS 2 Rs and for some i 2 S.

A social choice function f on Un is immune to strongly credible pro�table deviations
if for any RN 2 Un, any C � N , there is no strongly credible pro�table deviation of C
against RN .

Proposition 8 All generalized Condorcet winner rules are immune to strongly credible prof-
itable deviations.
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Let us say that we are aware that the idea of credibility may have other expressions.
Credibility is invoked when de�ning subgame perfection in extensive form games, and is also
a label for a speci�c form of implementation. We are also aware that, by combining dominant
strategy and Nash equilibria, we may raise larger questions regarding the consistency of the
players reasoning when forming coalitions. Addressing the consistency of using both types
of equilibria within the same de�nition is a challenge for future work.

5 Final remarks

We have opened the way to study new concepts regarding the incentives of groups of agents
to cooperate in manipulating social choice functions, and characterized some subclasses of
rules that may satisfy the new requirements in separable environments.
The voting methods we have identi�ed are interesting in several respects.
One interesting aspect is e¢ ciency. It is clear that strategy-proof rules cannot be fully

e¢ cient unless they satisfy a strong notion of group strategy-proofness. Yet, those that
satisfy our intermediate property have the interesting feature that any departure from their
prescribed outcomes leading to an e¢ cient one would not be credible. Thus, they are, in
that sense, e¢ cient up to credibility constraints.
Another interesting conclusion of our analysis is that those rules that imply extreme

distributions of voting power are immune to credible deviations from truth-telling. One could
think that this distribution is uneven or unfair. However, the class of Generalized Condorcet
winner rules that are obtained when the de�nitional parameters are concentrated in a single
point do coincide, in each dimension, with those characterized by Thomson (1993, 1999) as
being the only methods that satisfying an attractive normative property. His property, that
Thomson calls �welfare domination under preference replacement�, requires that when one
agent changes preferences and modi�es the social outcome, all other agents�welfare must
change in the same direction. Hence, we not only found exactly what are the conditions
that allow immunity, but also discovered that they may be justi�ed in terms of pre-existing
normative concepts.
Finally, let us acknowledge that the treatment of strategic considerations by the di¤erent

agents is somewhat asymmetric. Indeed, groups are allowed to form in order to manipulate,
but our main concept of credibility only considers single-agent non-cooperative departures
from cooperative agreements, à la Nash. This invites for further re�ection regarding these
and other issues of coalition formation, that we hope to keep developing in further work.
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Appendix

This Appendix contains the proofs of propositions stated in Section 4.

Proof of Proposition 6 By de�nition immunity to (type 1) credible pro�table devia-
tions implies immunity to credible pro�table deviations. To prove the converse, let RN 2 Un,
C � N , and R0C 2 U c be a pro�table deviation of C against RN . Suppose that for all i 2 C,
f(R0C ; RN jC)Rif(Ri; R

0
Cnfig; RNnC). By Lemma 1 f is strategy-proof, thus f(R

0
C ; RN jC)Ii

f(Ri; R
0
Cnfig; RNnC) for all i 2 C: By immunity to credible pro�table deviations, there exists

i 2 C such that f(Ri; R0Cnfig; RNnC)Pif(R0C ; RN jC) for some Ri 2 U . By these two facts, for
some i 2 C, f(Ri; R0Cnfig; RNnC)Pif(Ri; R0Cnfig; RNnC) which contradicts strategy-proofness.

Proof of Proposition 7 By de�nition immunity to credible pro�table deviations im-
plies immunity to (type 2) credible pro�table deviations. To prove the converse, let RN 2
Un, C � N , and R0C 2 U c be a pro�table deviation of C against RN . Suppose that
for all i 2 N , f(R0C ; RN jC)Rif(Ri; R

0
Cnfig; RNnC) for all Ri 2 U . Thus, for all i 2 N ,

f(R0C ; RN jC)Rif(Ri; R
0
Cnfig; RNnC). Since f is strategy-proof, f(R

0
C ; RN jC)Iif(Ri; R

0
Cnfig; RNnC)

for all i 2 N: By immunity to credible pro�table deviations, there exists i 2 C such that
f(Ri; R

0
Cnfig; RNnC)Pif(R

0
C ; RN jC) for some Ri 2 U . By these two facts, for some i 2 N ,

f(Ri; R
0
Cnfig; RNnC)Pif(Ri; R

0
Cnfig; RNnC) which contradicts strategy-proofness.
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Proof of Proposition 8 Let f be a generalized Condorcet winner rule with lists of
parameters, denoted in each dimension k as p�k � p+k . To prove that f is immune to strongly
credible pro�table deviations, let RN 2 Sn, C � N , and R0C 2 Sc be a pro�table deviation
of C against RN . Since R0C is a pro�table deviation, there must exist at least one dimension
k in which fk(RN) 6= fk(R

0
C ; RNnC) and some agent i 2 C is winning. By Claim 1, there

is an agent j 2 Cnfig who is losing in that dimension k. Let A and A0 be a partition of
C such that A = fi 2 C : is winning in dimension kg and A0 = fj 2 C : is losing in
dimension kg. Suppose, wlog, that fk(R0C ; RNnC) < fk(RN). By de�nition of A, for any
i 2 A, � k(Ri) < fk(RN). By de�nition of A0, � k(Rj) > fk(R0C ; RNnC). We distinguish two
cases:
Case 1. For any j 2 A0, � k(Rj) � fk(RN). Since fk(R0C ; RNnC) < fk(RN), then for any
l 2 C, � k(R0l) � fk(RN). Also, it must happen that for some j 2 A0, � k(Rj) = fk(RN). Let
S = fj 2 A0 : �(Rj) = fk(RN)g. Then for any l 2 S, let Rl be such that � k(Rl) = � k(Rl)
and � k0(Rl) = � k0(R

0
l) for any k

0 2 Knfkg. Thus fk(RS; R0CnS; RNnC) = fk(RN) and by
separability f(RS; R0CnS; RNnC) is preferred to fk(R

0
C ; RNnC) for any l 2 S. Which means

that R0C is not strongly credible.
Case 2. For some j 2 A0, � k(Rj) > fk(RN). Let S = fj 2 A0 : �(Rj) � fk(RN) and
� k(R

0
l) 6= � k(Rl)g. Since fk(R0C ; RNnC) < fk(RN), S is not empty. Then for any l 2 S, let

Rl be such that � k(Rl) = � k(Rl) and � k(Rl) = � k(R0l). Then for any l 2 S, let Rl be such
that � k(Rl) = � k(Rl) and � k0(Rl) = � k0(R0l) for any k

0 2 Knfkg. Thus fk(RS; R0CnS; RNnC) =
fk(RN) and by separability f(RS; R0CnS; RNnC) is preferred to fk(R

0
C ; RNnC) for any l 2 S.

Which means that R0C is not strongly credible.
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